您现在的位置: 论文资源库 >> 论文资源 >> 计算机 >> 人工智能 >> 正文

人工智能在电气传动领域的发展概况(2)|论文资源库

人工智能在电气传动领域的发展概况(2)
作者:未知 文章来源:网络 点击数: 更新时间:2008-6-23

三、人工智能在电气传动控制中的运用
这一部分主要讨论人工智能在交直流传动中运用的进展。值得指出的是这是一个广阔的领域,在过去二年中,研究活动极快的增长,本文只是概括一下人工智能在电气传动中的运用这一领域的进展,不可能覆盖研究的每一个可能领域。AI控制器在直流传动中运用的大多数研究集中于模糊逻辑应用,在人工神经网络和其它智能控制的研究还很少。下面主要讨论模糊、神经元和模糊神经元和模糊神经元控制器在交直流传动中的应用。
(一)人工智能在直流传动中的运用
1.模糊逻辑控制应用
   主要有两类模糊控制器,Mamdani和Sugeno型。到目前为止只有Mamdani模糊控制器用于调速控制系统中。限于篇幅本文不详细讨论其中的原因。值得注意的是这两种控制器都有规则库,它是一个if-then模糊规则集。但Sugeno控制器的典型规则是“如果X是A,并且y是B,那么Z=f(x,y)”。这里A和B是模糊集;Z=f(x,y)是x,y的函数,通常是输入变量x,y的多项式。当f是常数,就是零阶Sugeno模型,因此Sugeno是Mamdani控制器的特例。
Mamdani控制器由下面四个主要部分组成:
   (1)模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。
   (2)知识库由数据库和语言控制规则库组成。开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。
   (3)推理机是模糊控制器的核心,能模仿人的决策和推理模糊控制行为。
   (4)反模糊化实现量化和反模糊化。有很多反模糊化技术,例如,最大化反模糊化,中间平均技术等。
下面的表1由64个语言规则组成,是用于电气传动控制系统的一种可能规则表这个规则表相当大,实际应用中往往进行简化。在各种出版物中,介绍了许多被模糊化的控制器,但这应与“充分模糊”控制器完全区分开来,“充分模糊”控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的PI控制器(FPIC)使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到提高(17),控制器参数的微小变化可能导致特性的极大提高,被模糊化的控制器参数调整方法如下:P(ti)=P(ti-1)+kP*CP,I(ti)=I(ti-1)*CI。但如应用“充分”模糊逻辑控制器,系统响应远远优于FPIC和最优古典PI控制器,用于最优化常规控制器的计算时间比模糊化控制器所需的时间多得多。因此,使用最小配置的FPIC控制器是可能的选择之一,事实上,这也是用现有驱动装置实现的最简单方法。
   在许多电气传动文献中,介绍了用模糊逻辑控制器替代古典PI控制器(主要是速度调节器)改进系统响应的方法。可是,文献(18)详细探讨了模糊逻辑控制器用于三环直流电机控制系统中所有环节(速度、电流和励磁)的设计和调整的方法。作者也介绍了PI和PD控制器,文献(9)介绍了最小配置模糊控制用于直流传动中的可能性以及组合模糊控制器用于直流传动中得到满意响应的可能性。下节讨论模糊神经控制的直流传动装置时,我们将讨论这种速度和电枢电流调节器组合成单一控制器的情况。
2. ANNS的应用
  过去二十年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。由于ANNS有一致性的非线性函数估计器,因此它也可有效的运用于电气了传动控制领域,它们的优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。另外,由于ANNS的并行结构,它很适合多传感器输入运用,比如在条件监控、诊断系统中能增强决策的可靠性,当然,最近电气传动朝着最小化传感器数量方向发展,但有时,多传感器可以减少系统对特殊传感器缺陷的敏感性,不需要过高的精度,也不需要复杂的信号处理。
  误差反向传播技术是多层前聩ANN最常用的学习技术。如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择最优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的最快下降法,输出结点的误差反馈回网络,用于权重调整,搜索最优。输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。
  反向传播算法是多层前聩ANN最广泛使用的学习技术之一。但有时网络的收敛速度很慢,改进算法的开发是一个重要研究领域。英国Aberdeen大学在这方面取得过令人鼓舞的成绩,他们把常规的反向传播算法和其它AI技术结合起来,使得网络快速收敛,鲁棒性更好。他们还研究过基于AI技术的最优拓扑结构网络,但没有现成理论用于最优配置,Kolgomorov理论和其他理论也不适用,在神经网络的训练剧中使用遗传算法可能会提高收敛速度,遗传算法是一种基于自然进化和遗传机理的统计搜索方法,它模仿自然界个体适者生存不适者淘汰的原理解决问题,每一代由染色体代表的(一套特征串类似于DNA中的染色体)许多个体组成,每个个体代表搜索空间的一个点和一个可能的解。值得注意的是在神经模糊实现中,有时必须使用不同形式的反向传播技术,而不是已知的标准形式。反向传播技术是在线(Supervised)学习技术,需要充分的输入--输出数据对,虽然这种限制也可以用另外的方法加以克服,但该方法是离线的。
  日本和德国的研究人员试图把ANNS用于控制电力变换器,但到目前为止没有获得满意的结果,这也是一个很有趣的领域。主要的有待解决的障碍是学习阶段时间花费过长,总而言之,问题的关键是要给变换器的控制器找到一个满意的非线性函数近似器、得到期望的非线性输入--输出映射。常规技术就能实现简单的映射,而神经网络能实现更复杂的映射,并且由于它的并行结构这种映射相当快。
  只有很少的论文讨论神经网络在直流电机控制中的应用。文献(21)介绍了两个多层前馈人工神经网络在直流电机速度控制环中的应用。这是一种典型配置。辩识ANN用于训练第二个ANN(神经控制器,即过程控制器),因此过程输出跟随给定信号。学习过程用的是反向传播算法。该方法分为二步:第一步ANN被训练用来代表控制对象的响应。这需要用到表示控制对象输出和控制输入关系的微分方程。第二步把ANN用于控制对象模型的辩识方案中。在这步中,把ANN与控制对象并行连接,每次迭代时,给ANN提供给定信号作为ANN输入信号。辩识意味着调整权重,使ANN输出信号(即网络输出)和控制对象输出信号(即正输出)的误差最小。在辩识阶段,全局误差(即方差之和)以固定时间间隔被计算并与希望的最小值比较。第二个ANN是神经控制器被用于训练以给出需要的控制对象响应。为了训练这个网络,在每次采样输出时,必须知道误差(Ec)但仅仅只知道控制对象输出和希望输出(由给定输入决定)的最后误差,辩识方

这篇论文来自lunwen.5151doc.com[论文资源库]收集与整理,感谢原作者。
本文版权归原作者所有,如需转载或摘录请注明出处:论文资源库 http://lunwen.5151doc.com

论文录入:5151doc    责任编辑:5151doc 
【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
| 设为首页 | 加入收藏 | 联系站长 | 在线投稿 | 版权申明 | 网站登陆 |